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A model for bridge-assisted, long-range electron transfer in a molecule interacting with a dissipative external
bath is presented. The effects of the system-bath interaction are included phenomenologically in the evolution
of the system density matrix as energy dephasings on the bridge sites. When the bridge dephasings are
small, the steady state ET rate in this model is found to be the sum of two competing terms; the first is a
McConnell-type rate arising from direct tunneling from donor to acceptor, and the second is a dephasing-
dependent, length-independent scattering channel through the bridge sites. In the limit of large dephasings,
an incoherent channel dominates the dynamics and leads to ET rates that can become only weakly dependent
(kET ∝ 1/N) on the number of bridge sites in the system, for multisite bridges.

I. Introduction

In both synthetic and biological systems, nonadiabatic long-
range electron transfer is one of the most actively pursued areas
of contemporary chemistry.1-18 In biological molecules such
as cytochromes, hemoglobins, DNA, and docked proteins long-
range electron transfer has been investigated over time scales
running down to the femtosecond regime, and it is generally
found that, in the nonadiabatic regime, the rate of electron
transfer decays roughly exponentially with distance between
donor and acceptor sites.7,11 Synthetic molecules have been
prepared by a number of research groups, to investigate
specifically the rate of nonadiabatic intramolecular electron
transfer as the relative geometries and energetics of the donor
and acceptor moieties vary and, particularly, as the distance
between donor and acceptor, linked together by rigid bridges,
is varied.5 For example, Chart 1 shows several molecules
prepared in our group for the study of such electron transfer
phenomena.19-21

In the extensive literature on distance-dependent electron
transfer in molecular systems, we are aware of no systematic
observation of any change with length other than the exponential
relationship

HerekET,A(T), â, andRDA are respectively the observed electron
transfer rate; a prefactor that includes effects due to reorganiza-
tion energies and temperature, vibrations, Franck-Condon
factors, and the other important rate-determining phenomena;
an inverse decay length that generally depends on the energies;
and the distance between the centers of the donor and acceptor

sites.1,4 Indeed, this relationship is so widespread that much of
the current discussion often centers only on the magnitude of
theâ constant and how it varies with chemical structures and
energetics.4,22

A derivation of the exponential relationship of eq 1 can be
presented in several ways; in a chemical context, the first
important derivation was given by McConnell,23 who used
perturbation theory to discuss superexchange mixing of donor
and acceptor sites by intervening orbitals. McConnell’s results
have been rederived and generalized many times.6,10,12,17,24

Exponential behavior also occurs, of course, for simple tunneling
through a barrier,25 and that derivation has also been used to
justify, explain, and discuss exponential decay in long-range
electron transfer.26 More elaborate models, using semiempirical
electronic structural computation, ab-initio electronic structure
theories, pathway pictures, and simple overlap arguments, have
all been used to justify exponential dependence.27

There have been a few reports in the literature in which the
exponential dependence is very shallow,28-31 i.e.â sufficiently
small that the exponential decay is unimportant, and some in
which other functional forms are obtained.32 In conjugated
conducting polymers, for example, exponential decay of con-
ductance with distance is generally not observed. Rather, these
materials really do behave according to Ohm’s law: that is,
the electrons seem to be localized in the bridging structure
between the termini of the extended conductive network, and
conductance is determined by scattering processes that are
generally inelastic and can correspond to motion of defect
carriers such as solitons or polarons.4,33-37 Quantitatively, an
understanding of the difference between the exponential decay
of eq 1 and ohmic behavior can be determined starting with
the McConnell result:23 when the energy gap separating donor
and acceptor species from the electronic states of the bridge
becomes sufficiently small, states will mix, electron/vibration
coupling or electron/electron scattering or electron/defect scat-
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kET ) A(T) exp(-âRDA) (1)
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tering will be strong enough that electron localization on the
bridge can occur, and exponential decay should no longer be
expected. Similar behaviors have been seen in theoretical
studies of a number of systems, including particularly molecular
wire structures: here the injection energies can be taken as
arbitrarily close to the electronic states of the band, and
exponential decay is replaced by either power law decay or, in
the absence of scattering mechanisms, no decay at all.22,38-41

In the analogous situation of electron transfer through
tunneling barriers in semiconductor devices, it has been sug-
gested that incoherent processes arising from inelastic scatterings
can result in the transformation from exponential decay to ohmic
behavior, with the current dominated by inelastic processes and
decreasing only slowly, as the inverse of the length of the wire.42

Recently, similar results have been obtained in theoretical work
on long-range electron transfer.43-45 For example, Friesner and
his collaborators used the Redfield46-49 approach to quantum
dynamics in the presence of a dissipative environment to show
that, under appropriate temperature and coupling conditions,
long-range exponential decay is replaced by a much weaker
process, which when displayed in logarithmic coordinates,
appears to exhibit essentially no distance decay in the limit of
long chains.
In the present work we offer a simpler approach to the same

problem. Our technique is based upon supplementing the
Liouville equation describing the time evolution of the system’s
density matrix with phenomenological terms describing thermal
relaxation, and the simplification is achieved by focusing on
the steady state solution of the resulting equation. A similar
approach was used before50 to describe the transition from
coherent Raman scattering to incoherent fluorescence in mo-
lecular spectroscopy. It should be emphasized that this approach

can be made rigorous by including a microscopic derivation of
the relaxation rate coefficients;51 however, here we focus on
the phenomenological approach. Furthermore, in the present
work we deal with only one possible relaxation mechanism:
dephasing of the bridge levels. A phenomenological relaxation
parameter that describes the dephasing of the electron as it
passes through the bridging unit is added to the evolution
equations of the nondiagonal elements of the density matrix
associated with the bridge sites. This dephasing process arises
from the interaction of the electronic system with other bridge
and solvent motions. Introduction of these terms shows quite
clearly that, in the simple limit of nearest neighbor coupling,
there are two independently contributing mechanisms for long-
range electron transfer: with large gap energies and weak
mixings, and for short chains with relatively small dephasing
strengths, the McConnell behavior (superexchange-type cou-
pling, exponential decay with distance) is recovered. For longer
chains, higher temperatures, stronger dephasings, smaller gaps,
or stronger electronic mixings, long-range behavior decays much
more slowly, approaching the ohmic regime, in which the rate
is simply given by

This very weak dependence on length, corresponding to true
wire behavior, is expected in the regime in which incoherent
motion, determined by an inelastic scattering, dominates the rate
process.

In the usual semiclassical analysis of electron transfer rates,
the rate is expressed in the form

CHART 1

kET ) const/RDA (2)
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In eq 3,HDA is the electronic matrix element coupling the
donor and acceptor and FCWD is a Franck-Condon-weighted
density of states.26 In these semiclassical treatments, distance
dependence arises from bothHDA and FCWD, with the dominant
contribution provided by the former.1 Since semiclassical
treatments are developed using perturbation theory, there are
implicit assumptions made about the relative magnitudes of
certain system parameters. For instance, it is assumed that the
couplings between the electronic states are much less than the
reorganization energies. Our analysis differs because we make
a direct calculation of the electron transfer rate without relying
on perturbation theory. Therefore, a direct comparison between
our results and those of, for instance, the high-temperature
Jortner result26 is complicated. For example, in our treatment
vibronic coupling enters via dephasings, and the inverted regime
is not seen.
The phenomenological density matrix theory analysis of the

rate process is given in section II. Section III discusses the
observed behaviors and rationalizes them in terms of the
different contributing processes. Some conclusions are ventured
in section IV.

II. Theory

The Hamiltonian for a quantum mechanical system interacting
with a bath can be expressed as

where the three terms on the right-hand side of eq 4 are the
system, bath, and system-bath Hamiltonians, respectively. In
the absence of system-bath coupling, the dynamics of the
quantum mechanical system is fully described by the time
evolution of either its reduced density matrix52,53or the system
operators. For the reduced density matrix of a quantum system,
the quantum Liouville equation becomes (p ) 1)

whereLD includes the dynamical influences of the last two terms
in eq 4.
Instead of utilizing one of the more formal relaxation

theories,54-60 we incorporate the system-bath coupling in a
phenomenological way by replacingLD in eq 5 by appropriate
relaxation terms. This makes the analysis of the quantum
dynamics much simpler by avoiding many of the complications
associated with the more rigorous theories, such as concerns
about proper separation of the system and bath and nonphysical
evolution of the quantum mechanical observables.52,61,62 A
similar phenomenological relaxation theory was applied to
elucidate the relation between resonance Raman and resonance
fluorescence and serves as guide for including relaxation
parameters in the current model.50 It should be emphasized that
the resulting phenomenological equations can be derived as
approximations to the rigorous evolution equation (eq 5).
The electron transfer system of interest here consists of an

electron donor and acceptor, connected by N bridge sites. Our
system Hamiltonian has the form

In this formulation, each site has an energyωi and is coupled
in a tight binding fashion to its nearest neighbors by an electronic
coupling of magnitudeVi,i+1.
The equations of motion for this quantum system can now

be written down using the quantum Liouville equation and
incorporating the relaxation parameters of interest. As an
example, in theN ) 2 system the equations of motion are

with Fij ) F*ji, Vij ) V*ji, andωij ) ωi - ωj. Electronic population
is injected into the donor site by some unspecified source with
a flux given by C, and the acceptor site is coupled to a
population sink inducing a decay with a characteristic rateκ.
Thermal dephasing in the bridge appears here in the relaxation
(with rateγ) of all nondiagonal elements of the density matrix
associated with the bridge levels. In the language of magnetic
resonance,γ corresponds to a 1/T2 processes, andκ corresponds
to a 1/T1 process.63

In our model, we calculate directly the rate of decay of the
initial state rather than a rate constant. The equations of motion
(eq 7) can be re-expressed in the matrix form

whereA is the (N+2) × (N+2) matrix of coefficients,F is an
(N+2)2 × 1 vector consisting of the reduced density matrix
elements, andC is an (N+2)2 × 1 vector with the element
corresponding toFDD equal toC and all others zero. While the
equations of motion could be solved numerically to investigate
the evolution of the electronic population, we are more interested
in the steady state solution for the rate of electron transfer from
the donor to acceptor. At steady state, allF̆ij are equal to zero.
The electron transfer rate can be calculated as the ratio between
the steady state flux through the system,κFAA

SS ) C, and the
population of the donor level,FDD

SS.

kET ) 2π
p
|HDA|2(FCWD) (3)

H ) HS + HB + HSB (4)

F̆ ) -i[Hs,F] + LD (5)

Hs ) |D〉ωD〈D| + |A〉ωA〈A| + ∑
i)1

N

|i〉ωi〈i| + [|D〉VD1〈1| +

|N〉VNA〈A| + ∑
i)1

N-1

|i〉Vi,i+1〈i + 1|] + c.c. (6)

F̆DD ) -2 Im(V1DFD1) + C

F̆11 ) -2 Im(VD1F1D) - 2 Im(V21F12)

F̆22 ) -2 Im(V12F21) - 2 Im(VA2F2A)

F̆AA ) -2 Im(V2AFA2) - κFAA

F̆D1 ) iVD1FDD - iωD1FD1 + iV21FD2 - iVD1F11 - 1
2

γFD1

F̆D2 ) iV12FD1 - iωD2FD2 + iVA2FDA - iVD1F12 - 1
2

γFD2

F̆DA ) iVA2FD2 - iωDAFDA - iVD1F1A - 1
2
κFDA

F̆12 ) -iV1DFD2 + iV12F11 - iω12F12 + iVA2F1A - iV12F22 -
γF12

F̆1A ) -iV1DFDA + iV2AF12 - iω1AF1A - iV12F2A -
1
2

γF1A - 1
2
κF1A

F̆2A ) -iV21F1A + iV2AF22 - iω2AF2A - iV2AFAA -
1
2

γF2A - 1
2
κF2A (7)

F̆ ) A‚F + C (8)

rate) C

FDD
SS

(9)
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By utilizing eq 8, the calculation ofFDD
SS can be performed

quickly and efficiently using simple matrix inversion techniques.

III. Results and Discussion

For simplicity, we have takenωD ) ωA, and we have assumed
that the bridge is constructed of identical chemical units, so
that the bridge site energies become degenerate. Thus, the only
site-energy-dependent variable in the system becomes the
spacing between the donor and the bridge, which we will simply
label asω. We also choose to simplify the model further by
setting all electronic couplings equal to a single value,V. With
these assignments, our electron transfer rates will be functions
of the four independent parametersω, γ, V, andκ, as well as
the number of bridge sites in the system.
It should be emphasized that the bridge dephasing ratesγ

and the effective electronic couplings between the sites are
temperature dependent. This dependence is not displayed
explicitly in eq 7. Also, eq 7 neglects the possibility of a
thermally activated transmission from the donor to the bridge;
that is, it assumes that the corresponding energy gap is much
larger thanKBT.
Extracting the rate, eq 9, from eq 7 or its equivalent is

facilitated by the Mathematica package.64 For N ) 1 we get

While eq 10 may appear daunting at first, when investigated in
specific limits of the model parameters it leads to several
interesting predictions:
(a) If γ is much smaller than the other three parameters in

this model, then those terms of O(γ2) and higher may be ignored
in eq 10.
(b) If in additionω > κ, V, then eq 10 can be rearranged to

Since the rate is given as a sum, then the overall electron transfer
rate is governed by competition between two distinct electron
transfer channels. The first part of eq 11 is a McConnell23

superexchange term, which arises from direct electronic tun-
neling between the donor and acceptor. In this model, the
electronic tunneling rate through a bridge of arbitrary lengthN
is given by

The second term comes from a dephasing-dependent scat-
tering channel, where the bath-induced fluctuations of the bridge
site energies cause the electronic population to move from donor
to acceptor in a series of short hops through the bridge.
For γ much larger than all other parameters, the three-site

rate (eq 10) becomes

Note here that the rate is dependent on the inverse of the
dephasing rate. This dependence of the incoherent transfer rate
upon the dephasing magnitude in the two different extremes

(proportional toγ at smallγ, and toγ-1 at largeγ) is reminiscent
of the dependence of reaction rates on friction in the classical
Kramers theory.65

The analytical solution for the four-site system was also
calculated using Mathematica; however, the full result will not
be presented here because of its excessive length. When
analyzed in the small-γ limit (all terms of O(γ2) and higher
neglected), andω > κ, V, the analytical four-site rate becomes

Again, in the small-γ limit, the transfer rate becomes the sum
of a McConnell superexchange rate and a term proportional to
γ. In the large-γ limit, the electron transfer rate becomes

On the basis of this last result, it appears as though the steady
state transfer rate in this model goes like

in the large-γ limit. Numerical solution of the steady state
equations for arbitraryN confirm these results. This behavior
is ohmic in nature since the rate is inversely proportional to the
number of bridge sites (or equivalently the length of the bridge).
Figure 1 displays the effects ofγ on the electron transfer

rate for a system withω ) 1500 cm-1, V ) 300 cm-1, andκ
) 400 cm-1. As γ increases, the overall electron transfer rate
becomes enhanced over the McConnell rate, up to a certain
value, after which the rate begins to fall off once more. As the
number of bridge sites increases, the enhancement of the rate
increases, and the onset of the scattering channel dominance
begins at smaller values ofγ.
The two most sensitive parameters in this theory areV and

ω. According to the McConnell picture, the dependence of the
effective electronic coupling onV goes likeV(N+1), so as the
electronic matrix element between the sites increases, then the
rate of electron transfer should increase. But, when the system

rate) (14γ2
κ
2V2 + 1

4
γκ3V2 + 2γκV4 + κ

2V4)/(18γ3
κ
2 +

3
16

γ2
κ
3 + 1

16
γκ4 + 5

4
γ2
κV2 + 5

4
γκ2V2 + 1

4
κ
3V2 + 2γV4 +

κV4 + 1
2
γκ2ω2 + 1

4
κ
3ω2) (10)

rate) 4V4

κω2
+ γ(Vω)2 (11)

McConnell rate) 4V2N+2

κω2N
(12)

rate) 2V2

γ
(13)

Figure 1. Dependence of the ratio between the steady state rate
predicted by eq 9 and the rate given by the McConnell term in eq 11
on the system-bath coupling parameterγ. The system variables are
given the valuesω ) 1500 cm-1, V ) 300 cm-1, andκ ) 400 cm-1.
The three plots correspond to systems withN ) 6 (s), N ) 5 (---),
and N ) 4 (‚‚‚). As γ increses from zero, there is significant
enhancement of the electron transfer rate over the McConnell rate in
these long bridges due to the introduction of the incoherent scattering
channel. Forγ >> ω the rate decreases as 1/γ.

rate) 4V6

κω4
+ γ (Vω)2 (14)

rate) V2

γ
(15)

rate) 2V2

Nγ
(16)
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is placed in a dissipative bath, competition between the
γ-dependent andγ-independent channels, both of which are
dependent uponV, leads to a complex evolution of the rates
with increasing electronic coupling. The evolution of the steady
state electron transfer rates in this model for theN ) 3 andN
) 6 cases is presented in Figure 2. In the shorter bridge, even
at the smallest electronic coupling considered here, McConnell
transport is dominant at smallerγ. AsV increases, the overall
rate of electron transfer at each value ofγ increases, and the
onset of enhancement from the incoherent channel moves toward
higher values. In theN ) 6 system, at the smallest values of
the electronic coupling, the incoherent channel has already
become the dominant term governing the evolution of the rates
because the tunneling channel is just not efficient enough to
dominate the electron transfer process anymore. Note the rate
drops with increasingγ in the high-γ limit, as predicted by eq
16.
While the rates will generally increase withV, an opposite

effect on the magnitude of the energy gap between the donor
and bridge is predicted, so as the sites move farther from
resonance, then the rate of electron transfer should decrease. In
Figure 3, thisω dependence is evident for both theN ) 3 and
N) 6 systems. For theN) 3 system, the competition between
the two channels is dominated by direct tunneling, especially
as the sites move close to resonance. In the longer bridge, as

ω increases, the scattering channel quickly becomes important
in the transfer rates. This is especially apparent in the dynamics
at the largest value of the energy gap, where the dependence of
the rate onγ is already linear at very small values of the
system-bath coupling.

Figure 4 shows the evolution of the electron transfer rate with
increasingN, at three specific values ofγ. If the only process
available for electron transfer was the superexchange (tunneling)
channel, then the electron transfer rate would be expected to
fall off exponentially with an increasing number of bridge sites.
As soon as the bridge sites couple to the external bath, a second,
incoherent, channel opens. In the small-γ limit, this channel
enhances the transfer rate up to a finite number of bridging sites,
after which it will dominate the electron transfer rate. Thus,
the electron transfer rate has the behavior displayed in Figure
4 for γ ) 0.001 cm-1 andγ ) 1.0 cm-1, where the transfer
rate is exponential for short bridges and eventually becomes
distance independent for the longer bridges. A rough estimate
for the onset of this phenomenon, in the large-ω limit, comes
from setting the rates of the superexchange channel (eq 12) and
the scattering channel (γ(V/ω)2) equal to one another and then
solving forN. The result is

Figure 2. Influence of the magnitude of the electronic coupling,V,
on the overall rate of electron transfer in systems with three bridge
sites (a) and six bridge sites (b).ω ) 1500 cm-1, andκ ) 400 cm-1.
In both a and b, the plots correspond toV ) 600 cm-1 (s), V ) 300
cm-1 (---), V ) 150 cm-1 (‚‚‚), andV ) 50 cm-1 (- ‚ -). For both
bridges, tunneling dominates the rate dynamics up to aV-dependent
critical value of γ, after which the incoherent channel becomes
dominate. The higher the value ofV, the higher the overall rate of
electron transfer.

Figure 3. Dependence of the electron transfer rates upon the donor-
bridge energy gap,ω, for both the three-site bridge (a) and the six-site
bridge (b).V) 300 cm-1, andκ ) 400 cm-1. In both a and b the plots
correspond toω ) 3000 cm-1 (s), ω ) 1500 cm-1 (---), andω ) 500
cm-1 (‚‚‚). For both bridges there is an inverse relationship between
the rate andω so that as the energy gap increases, then the rate of
electron transfer decreases. Also, the farther the donor and bridge sites
are from resonance, the stronger the influence of the scattering channel
on the rate, especially as the bridge length becomes very long (b,ω )
3000 cm-1). Parts a and b also illustrate theω independence of the
transfer rates in the large-γ limit.
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Hence, the onset of length independence comes at a larger
number of sites asV increases, but at smaller bridge lengths
for increasingω, γ, andκ. Equation 17 predicts that the onset
of apparent length independence should occur at a value ofN
) 3 for γ ) 1.0 cm-1, andN ) 5 for γ ) 0.001 cm-1. Both
predictions are in agreement with the plots of Figure 4. In the
limit of large γ, the nearly distance-independent inelastic
scattering channel (ohmic behavior) completely dominates the
overall rate of electron transfer. The plot for the rate vsN for
theγ ) 10 000 cm-1 case illustrates thekET∼ 1/N dependence
of the electron transfer rates in this regime.
In order to further understand the dynamics of this model in

the three transfer regimes (McConnell, distance independent,
ohmic), the site populations for theN) 4 system are displayed
in Figure 5. The sites are numbered such that the donor is site
1, and site 6 is the electron acceptor. In the McConnell
superexchange limit (γ ) 0.0001 cm-1), the electronic popula-
tion is predominately localized on the donor site and falls off
rapidly through the bridge. This is as expected, since the bridge
sites should act as virtual states in which the electronic
population never physically localizes as it traverses the system
from donor to acceptor. In the ohmic limit (γ ) 100 000 cm-1),
the electronic population on the donor and the four bridge sites
are all comparable. In this limit, the electronic dephasings of
the bridge sites are so strong that the bridge sites effectively
become isoenergetic with the donor, and population will localize
on them as it moves between donor and acceptor. For this set
of parameters, whenγ ) 10 cm-1, the system is in the regime
whereγ(V/ω)2 dominates the McConnell rate, and the steady
state rates are distance independent. Here, the donor site
population is not quite as dominant as it was in the superex-
change limit, and the bridge sites become equivalent with respect
to electronic population.
While the weak dependence on distance in the incoherent

transfer case seems reasonable, the magnitude ofγ at which
the onset occurs depends on the details of the model. The
frequency-independent dephasing rateγ added to the Liouville
equation corresponds to a Lorenzian line shape of the bridge
site energies. Equivalently, the relaxation arises from a bath
correlation function which is instantaneous (δ-correlated).

While this form for a bath correlation function is appropriate
for its long time behavior, it fails to take into account the time
reversal symmetry of correlation functions on short time scales,
which would lead to a Gaussian line shape66 and to a slower
onset of flat behavior in Figure 4.

IV. Conclusions

Using a phenomenological treatment of the interaction of a
quantum mechanical system with an external bath, we have
developed a model for long-range electron transfer that displays
many of the features seen previously in treatments carried out
using the more rigorous Redfield theory.43,44 In the weak
dephasing limit, the two important independent channels for
electron transfer, the tunneling and the inelastic scattering, fall
readily out of the steady state analytical solutions to the
equations of motion. In different limits of the ratio of the
magnitude of the electronic coupling to the donor-bridge energy
gap, one channel will become dominate over the other. In
particular, as the ratioV/ω becomes larger, the tunneling rate
will dominate the transfer dynamics. Conversely, asV/ω
decreases, the energy dephasings of the bridge sites begin to
play a larger role in determining the electron transfer rates. Since
the tunneling rate depends on the number of bridge sites in the
system, as the number of bridge sites increases, the scattering
rate will begin to dominate at larger values ofV/ω. In the limit
of large coupling, the system is in an ohmic regime where the
distance dependence of the electron transfer rates scales as 1/N,
and the magnitude of the rate depends on the inverse of the
coupling strength.
Perhaps the most intriguing result from this theory is the

prediction that even with modest dephasing rates, the electron
transfer rates become distance independent. In the absence of
system-bath coupling, the simplest McConnell superexchange
theory predicts that electron transfer rates will fall off expo-
nentially with increasing bridge length. As soon as the quantum
system comes in contact with an external bath, then an
effectively distance-independent incoherent channel is turned
on, and at some critical bridge length the electronic tunneling
rate becomes too small in magnitude to compete effectively.
Several experimental studies have shown weak distance depen-
dence of the observed electron transfer rates in these types of
donor-bridge-acceptor molecules, including molecules with
short-chain oligomers of conjugated organic polymers67 and

Figure 4. Evolution of the electron transfer rates asN, the number of
bridge sites, is increased.ω ) 1500 cm-1, V) 300 cm-1, andκ ) 400
cm-1. The plots correspond to systems where the magnitude of the
bridge dephasings areγ ) 1.0 cm-1 (s), γ ) 0.001 cm-1 (---), andγ
) 10 000 cm-1 (‚‚‚). Even for moderate values of the dephasings, the
rates are predicted to quickly become nearly distance independent.

N)
ln[κγ/4ω2]

2 ln[V/ω]
(17)

Figure 5. Electronic population on each site in theN ) 4 system.
The donor is labeled as site 1 and the acceptor as site 6.C) 1.0 cm-1,
ω ) 1500 cm-1, V ) 300 cm-1, andκ ) 400 cm-1. The three values
of γ, 0.0001 cm-1 (s), 10 cm-1 (---), and 100 000 cm-1 (‚‚‚),
correspond to the system being in the McConnell, distance independent,
and ohmic regimes, respectively.

ET Rates in Bridged Molecular Systems J. Phys. Chem. A, Vol. 101, No. 35, 19976163



dithiaspiro68 bridging units. With that said, much more work
along these lines is required before any definite conclusion could
be reached as to the possible importance of the incoherent
mechanism and the breakdown of the exponential decay (rate
∝ exp(-âN)) in these bridged donor/acceptor systems.
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